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Schedule (Day 1)

 Day 1

 Physics background.

 Heavy water separation.

 Design options for HWR‟s.

 HWR characteristics.

 Design components (focus on CANDU-type)

 Control devices.

 Fuel cycles, thorium (optional, if time permits).

 CANDU-PHWR features.

 CANDU History (Gen-I, Gen-II) (optional, if time permits)

• NPD-2, Douglas Point

• Pickering, Bruce, Darlington, CANDU-6
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Schedule (Day 2)

 Day 2

 CANDU History (Gen-I, Gen-II) (optional, if time permits)

• NPD-2, Douglas Point

• Pickering, Bruce, Darlington, CANDU-6

 Gen-III+

• Enhanced CANDU-6 (EC6), ACR-1000

• 220-PHWR (India), 540-PHWR (India), AHWR (India)

• TR-1000 (Russia)

 Gen-IV (optional, if time permits).

• SCOTT-R (old concept), CANDU-SCWR

 Gen-V:  ??? (optional, if time permits)

 Additional Roles, International Penetration

 Dominant Factors, Future Motivation

 Conclusions
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Outline

Many topics to cover (by no means complete)

 Fundamental Physics

 Design Options 

 Physics and Engineering Issues

 Review of Conventional HWR Power Reactors

 Prototypes / Experiments (Historical)

 Commercial Reactors

 Present Day and Near Future

 Gen-III+ (EC6, ACR-1000, AHWR)

 Gen-IV (CANDU-SCWR)

 Additional Information (see Supplements 1 and 2)

 HWR R&D, prototypes, alternative HWR concepts.
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What We Won’t Cover

 See supplementary presentations for further reading.

 R&D Activities for HWR „s - Supplement 1

 Types of Measurements/Testing.

 Heavy Water Research Reactors and Critical Facilities.

 International Participation (Past and Present).

 Present R&D Efforts and Needs for HWR‟s.

 Additional Information  – Supplement 2

 Alternative Deuterium-Based Moderators

 Alternative Uses for D2O

 Alternative Coolants

 International Participation in HWR Technology

 Alternative HWR Reactor Designs

 Cancelled / Abandoned HWR Projects

• Timing and special circumstances.
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Goals

 Better appreciation of heavy water reactors.

 Some historical review.

 We can learn from the past.

 Variables change with time.

• Materials science technologies, manufacturing.

• Enrichment, availability of resources.

• Public understanding, political climate.

 Better understanding.

 Motivation.

 How it works.

 Design features.

 Physics issues, engineering issues.

 Long term prospects, implications for future. 
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Reactor Physics Considerations

 Goal is to sustain fission reactions in a critical assembly using 

available fissile (and fertile) isotopes.

 Fissile (e.g., U-235, U-233, Pu-239, Pu-241)

 Fertile (e.g., breed Pu-239 from U-238, U-233 from Th-232)

 Fissionable (eg. U-238, Th-232 at high energies)

• Also:  isotopes with low thermal fission cross sections:

o Pu-238, Pu-240, Pu-242, Am-241, Am-243, Cm-244, and other MA‟s.

 Fission cross section for various isotopes.

 Thermal spectrum:   ~ 500 barns  to 1000 barns.

 Fast spectrum: ~ 1 barn  to 10 barns. 

 Minimize enrichment requirements.

 Cost.

 Safety.

 Incentive to use thermal reactors. 
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U-235 / U-238

 U-235 Fission, U-235 capture, U-238 capture
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Pu-239 / Pu-241

 Fission cross sections

9



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010

Pu-239 / Pu-240 / Pu-241 

 Fission, capture.

 Resonances.
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U-233 / Th-232

 Th-232 Capture, U-233 fission.
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Isotopes for Moderation

 H, D, 7Li, Be, C – Scatter Cross Sections

 Hydrogen highest.
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Isotopes for Moderation

 H, D, 7Li, Be, C – Capture Cross Sections

 Deuterium lowest.

13



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010

Options for Moderator

 Hydrogen-based moderator (H2O, ZrH1.6, CxHy, etc.)

 Shortest neutron slowing down distance, but absorption.

 Deuterium-based moderator (D2O, ZrD1.6, CxDy, etc.)

 Moderating ratio 30 to 80 times higher than alternatives.

 Excellent neutron economy possible.
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D2O Moderator Advantages

 Excellent moderating ratio, ~5,670 >> 71 (H2O)

 What does this get you?

 Can use lower enrichment (e.g., natural uranium).

 Higher burnups for a given enrichment.

• Higher utilization of uranium resources.

 Reduce parasitic neutron absorption in moderator.

• Save neutrons, and spend them elsewhere.

o For fission, for conversion.

• Permits use of higher-absorption structural materials.

o High P, High T environments – better efficiencies.

o Materials to withstand corrosive environments.

 Thermal breeders with U-233 / Th-232 cycle feasible.

• C.R. ~ 1.0, or higher, depending on design.

It’s all about neutron economy!
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D2O Characteristics

 Thermal-hydraulic properties similar to H2O.

 Purity Required > 99.5 wt%D2O
 dkeff/dwt%D2O ~ +10 to +30 mk/wt%D2O

 Less sensitive for enriched fuel.

 1 mk = 100 pcm = 0.001 dk/k

 Cost:
 ~300 to 500 $/kg-D2O; ~200 to 400 $/kWe

 New technologies will reduce the cost.

Quantity Required
 ~450 tonnes for CANDU-6 (~ 0.67 tonnes/MWe)

 ~$150 to $200 million / reactor

 Upper limit for D2O-cooled HWR reactors.

• Use of lower moderator/fuel ratio (tighter-lattice pitch) and/or

• Alternative coolants can drastically reduce D2O requirements.
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D2O Extraction from Water

 Electrolysis (1930‟s / 1940‟s)

 Norsk Hydro (WWII)

 H2O electrolyzes preferentially.

 Used today for upgrading.

 GS (Girdler-Sulfide) Process

 1960‟s to 1980‟s; industrial scale.

 Reversible thermal/chemical process

 HDO + H2S H2O + HDS

 Deuterium moves to sulfide form at 

hot temp. (130 C). 

 Deuterium moves back to oxide form 

at cool temp.

 Multiple stages with hot/cold streams.

17



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010
18

D2O Extraction for Water

 GS Hydrogen Sulfide Separation Process



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010

D2O Extraction for Water

 Alternative and new processes under advanced development and 

refinement.

 Combined Industrial Reforming and Catalytic Exchange (CIRCE).

 Combined Electrolysis and Catalytic Exchange (CECE).

 Bi-thermal Hydrogen–Water (BHW) processes.

 Other physical and chemical processes (ammonia/water, etc.).

 Newer processes more efficient.

 More cost-effective; at least 30% reduction.

 References:

 An Early History of Heavy Water, by Chris Waltham, 2002.

• http://www.physics.ubc.ca/~waltham/pubs/d2o_19.pdf

 Heavy Water: A Manufacturer‟s Guide for the Hydrogen Century, by A.I. 

Miller, Canadian Nuclear Society Bulletin Vol. 22, No.1, 2001 February.

• www.cns-snc.ca/Bulletin/A_Miller_Heavy_Water.pdf
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Frederic Joliot

Connection to Heavy Water

 http://www.physics.ubc.ca/~waltham/pubs/d2o_19.pdf

 Frederic Joliot

 Colleagues with Hans von Halban, and Lew Kowarski.

 Recognized in 1939 that D2O would be the best moderator.

 Helped smuggle 185 kg of HW to U.K. (originally from Norway)

 Eventually went to Canada (along with Kowarski).

 If not for WWII, the world‟s first man-made self-sustaining critical 

chain reaction in uranium may have occurred in France using 

D2O + natural uranium (NU).

 Assisted in developing France‟s first research reactor

 ZOE, 1948

 Heavy water critical facility. 
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Design Options for HWR’s

 Pressure tubes (PT)

 Thick-wall pressure tube is main boundary

 D2O moderator at low T (<100 C), low P (1 atm)

 PT sits inside calandria tube (CT)

 PT, CT must be low neutron absorber (Zircaloy)

 Low-P coolants (organic, liquid metal) may allow thinner PT/CT.

 Used in CANDU, EL-4, CVTR designs.

 Pressure vessel (PV)

 Thin-walled PT/CT used to isolate fuel channels.

 Moderator at higher P (10 to 15 MPa), T (~300 C).

 Thick pressure vessel (~20 cm to 30 cm).

 Pre-stressed reinforced concrete is an option.

 Used in MZFR, Atucha 1, KS-150 designs. 
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Primary Coolant Options

 D2O at 10 to 15 MPa (CANDU, Atucha)

 H2O at 10 to 15 MPa (ACR-1000)

 Boiling H2O at 5 to 7 MPa (AHWR)

 Use previously in SGHWR, FUGEN, Gentilly-1 Prototypes.

 Supercritical H2O at 25 MPa (Gen-IV)

 SCOTT-R (Westinghouse study, 1960‟s)

 CANDU-SCWR (AECL, Gen-IV program)

 Other coolants

 E.g., gas, organics, liquid metals, molten salt.

 See Supplement 2 for additional information.
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Primary Coolant Features – D2O

 D2O at 10 to 15 MPa (CANDU, Atucha)

 Used in conjunction with steam generator.

 Low absorption cross section; good neutron economy.

 Conventional steam-cycle technology.

 Coolant Void Reactivity (CVR)

• Resonance absorption in U-238, U-235 changes with voiding.

• Depends on fuel / lattice design.

o Pin size, enrichment, moderator/fuel ratio, etc.

• May be slightly positive, or negative.

 Higher capital costs; minimizing leakage.

 Tritium production and handling, but useful by-product.

 Water chemistry / corrosion for long-term operation.

 Hydriding of Zircaloy-PT.

 Efficiencies (net) usually limited to < 34%; 30% to 31% is typical.
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Primary Coolant Features:  H2O

 H2O at 10 to 15 MPa (ACR-1000)

 Pressurization to prevent boiling (T< 342 C at 15 MPa)

 Cheaper, lower capital costs.

 Conventional steam-cycle technology.

 Higher neutron absorption; reduced neutron economy.

 Must design lattice carefully to ensure small CVR.

• H2O is a significant neutron absorber, as well as a moderator.

• Use of enriched fuel, poison pins.

 Water chemistry / corrosion for long-term operation.

 Hydriding of Zircaloy-PT

 Net efficiencies usually limited to ~ 34%.

• Higher P and T may allow increase to ~36%.
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Primary Coolant Features:

Boiling H2O

 Boiling H2O at 5 to 7 MPa (T~264 C to 285 C)

 Cheaper, lower capital costs.

 Thinner PT‟s feasible; reduced neutron absorption.

 Direct steam cycle

• Eliminate steam generator; slightly higher efficiencies.

• Up to 35%.

 Neutron absorption in H2O.

 Must design lattice carefully to ensure negative CVR.

• Smaller lattice pitch; enriched and/or MOX fuel.

• Moderator displacement tubes.

• More complicated reactivity control system.

 Water chemistry / corrosion; hydriding of Zircaloy-PT

 Radioactivity in steam turbine.

 Demonstrated in SGHWR, Gentilly-1, FUGEN prototypes.
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Primary Coolant Features

Super-critical H2O

 Supercritical H2O at 25 MPa (T~400 C to 600 C)

 Similarities to boiling H2O.

 Higher efficiencies possible, ~45% to 50%.

 Thicker PT‟s required (~ 2; reduced neutron economy).

 Severe conditions; corrosive environment

• T~400 C to 600 C.

• High-temp. materials required – reduced neutron economy.

• Use of ZrO2, MgO, or graphite liner for PT

 Design to ensure low CVR

• Enrichment, pitch, pin size, poisons.

 Careful design for prevention/mitigation of postulated accidents

• De-pressurization from 25 MPa.

 More challenging to design for on-line refuelling.

• May require off-line, multi-batch refuelling (reduced burnup).

• Use of burnable neutron poisons, boron in moderator.
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HWR Physics Characteristics

 Moderator isolated from fuel/coolant.

 Keep at lower temp (< 100 C, for PT reactors).

 Physics properties depend on:

 Moderator / fuel ratio.

 Fuel pin size (resonance self shielding).

 Composition / enrichment (U, Pu, Th).

 Coolant type (D2O, H2O, gas, organic, liquid metal, etc.).

 Reactivity Coefficients.

 Fuel temperature comparable to LWR.

• Somewhat smaller in magnitude.

 Void reactivity (+ve or -ve ), depending on design.

• Aim for small magnitude.

 Power coefficient (usually negative), depending on design.

• Aim for small magnitude, slightly negative.
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HWR Physics Characteristics

 Special Feature of HWR‟s:

 Longer neutron lifetime.

 Neutrons diffuse for a longer period of time 

before being absorbed (because of D2O)

 ~ 1 ms vs. LWR (<0.05 ms); ~20 longer.

 = +6 mk (600 pcm) Period ~ 1 sec.

 Slower transient (much easier to control).

 Extra delayed neutron groups

 Photo-neutrons from + D n + H reaction.

 Half-life of several photo-neutron precursors >> 

longest lived delayed neutron precursor (~55 

seconds).

 Measurements show long-lived photo-neutron 

sources with half-lives ranging from ~2 minutes 

to ~300 hours.
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HWR Physics Characteristics

 Conversion Ratio (C.R.).

 C.R. = 0.7 to 0.9 (depends on enrichment, parasitic losses).

• U-metal ideal, but UO2, UC more practical.

 C.R. > 1.0 possible for U-233 / Th-232 thermal breeder.

• Careful design of lattice required to maximize neutron economy.

 Burnup of fuel.

 Natural U ~ 5 GWd/t to 10 GWd/t (CANDU ~8 GWd/t).

 Slightly enriched U ~ 10 GWd/t to 30 GWd/t.

 Feasible to use recovered uranium (RU) / spent LWR fuel.

• Work in tandem with LWR‟s to maximize energy extraction.

• Excellent neutron economy.

o Can burn just about anything.

• Important role for HWR‟s in global fuel cycle.
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HWR Physics Characteristics

 PT D2O reactors, some unique safety features.

 Multiple, independent shutdown systems feasible.

• Shutdown rods.

• Moderator poison injection (B-10, Gd, etc.).

• Low-pressure environment for moderator.

 Longer reactor period

• More time for shutdown systems to work.

 Multiple barriers to contain fission products.

• Fuel clad.

• Pressure Tube.

• Calandria Tube.

 Large heat sink to dissipate heat.

• D2O moderator.

 Emergency core cooling (ECC) system, full containment, vacuum 

building (typical for CANDU reactors).
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HWR Physics Characteristics

 Power Density in Core.

 Major factor in size/cost of reactor.

• How much concrete are you going to use?

 Depends on enrichment, lattice pitch, coolant.

 D2O/H2O cooled:  ~ 9 to 12 kW/litre

• LWR ~ 50 to 100 kW/litre.

• 15 to 20 kW/litre feasible with tighter lattice pitch

o E.g., ACR-1000

 Gas-cooled:  ~ 1 to 4 kW/litre

• 10 to 15 kW/litre feasible with high pressures (10 MPa)

 Organics, Liquid Metal ~ 4 to 10 kW/litre 

• 10 to 15 kW/litre feasible.

 However, remember:  Balance of Plant

 Steam generators, steam turbines, condensers take up space.
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HWR Operational Characteristics

 Heat load to moderator

 5% to 6% of fission energy deposited.

 Gamma-heating, neutron slowing down (2 MeV 0.0253 eV).

 Thermal efficiencies (net)

 Depends on choice of coolant, secondary cycle.

 Typical: 28% to 31% for CANDU-type reactors.

• Improved for larger, more modern plants.

• Improvements in steam turbines, balance of plant.

• Possible to increase to ~33% to 34%.

 32% to 34% feasible for HWBLW-type reactors.

 Gas, organic, liquid metal:  35% to 50% (stretch).

• At very high T, potential to use gas turbines (Brayton cycle).

• Or, combined cycles (Brayton + Rankine).

 Economies of scale with larger plants.
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CANDU-PHWR Design Components

 Fuel / Bundles

 UO2 clad in Zircaloy-4; collapsed cladding.

 Graphite interlayer (CANLUB) to improve 
durability.

 Brazed spacers, bearing pads, appendages

• Maintain element separation; enhance cooling

 Alternatives:

• Fuel:  UC, U3Si

• Clad:  SAP (organics) or stainless steel (gas, 
liquid metal, SC H2O) 

 Pressure Tubes.

 Zr-2.5%Nb alloy (corrosion, toughness, strength)

 Calandria Tubes.

 Zircaloy-2 (rolled joints to fit with steel tube sheet)

 Feeders/Headers.

 Stainless steel (special mechanical rolled joints 
with PT)
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HWR Control Devices

 Control rods (stainless steel – SS, etc.)

 Shutdown rods (B4C, Cd/Ag/In, SS/Cd, etc.) 

 Adjusters (flatten flux shape) – Cobalt, SS

 Zone controllers

 Tubes with liquid H2O used to adjust local reactivity.

 Mechanical zone controllers with neutron absorbing material.

 Moderator poison options

 Boric acid for long-term reactivity changes.

 Gadolinium nitrate injection for fast shutdown.

 CdSO4 .

 Moderator level.

 Additional means for reactivity control, for smaller reactors.

 Moderator dump tank (for emergency shutdown).

 Initial designs; not used in later, in larger reactors.
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CANDU Reactor Technology

 D2O Moderator (~70 C, low pressure) in calandria.

 D2O Coolant (~10 MPa, 250 C – 310 C)

 Pressure Tubes, Calandria Tubes

 28.58-cm square lattice pitch

 Natural uranium fuel (UO2) in bundles

 37-element (CANDU-6, Bruce, Darlington)

 28-element (Pickering)

 Burnup ~ 7,500 MWd/t (nominal).

 8,000 to 9,000 MWd/t for larger cores.

 On-Line Refueling (8 to 12 bundles per day)

 Approximates continuous refuelling.

 Two independent shutdown systems.

 SDS1 (shutoff rods), SDS2 (poison injection).
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On-power

Fueling

Modular

Design

Large heat

sinks

Heavy Water

Moderator and 

Coolant

Simple fuel

bundle

Fuel

Calandria Tube

Pressure Tube

CANDU Reactor Technology
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CANDU-PHWR Features

 Excellent neutron economy.

 High conversion ratios (C.R.>0.8).

 Operate on natural uranium (NU); enrichment not required.

 High fuel utilization; conservation of resources.

 Continuous On-line refuelling.

 Low excess reactivity.

 Higher fuel burnup for a given enrichment.

• 30% more burnup than 3-batch refuelling.

• Maximize uranium utilization (kWh/kg-U-mined).

 High capacity factors (0.8 to 0.95).

 Modular construction.

 Pressure tubes; replaceable; reactor can be refurbished.

o Currently underway at Pt. Lepreau, Bruce, Wolsong CANDU 

reactors.

 Local fabrication (do not need heavy forgings).
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CANDU Nuclear Steam Plant
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CANDU-PHWR Operational Issues

 Plumbing

 Feeders / headers for each PT.

 Joints and seals.

 Pressure tubes.

• Sag and creep.

• Corrosion, embrittlement (D, H).

• Periodic inspection and assessment.

 Fuelling Machines

 Maintenance; high radiation environment.

 Tritium production (n + D T + )

 Removal, handling, storage (T1/2 = 12.3 years).

• T  He-3 + -

 By-product for use in self-luminous signs, fusion fuels.
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CANDU Safety Characteristics

 Slightly positive coolant void reactivity (CVR).

 Reactivity increases when coolant changes to void.

 Due to slight shift in neutron energy spectrum.

 Reduced resonance absorption in U-238.

 What matters, is that the magnitude is relatively small.

 Magnitude of reactivity coefficients should be as small as possible

• Whether positive, or negative. 

 But, there are several key mitigating circumstances.

 Voiding is not usually instantaneous to all channels.

 Long neutron lifetime (~ 1 ms) in D2O leads to slower transient.

• Plenty of time for engineered shutdown systems to work.

• Possibly more time than is available for shutdown and ECCS systems in 

postulated LWR accident scenarios.
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CANDU Safety Characteristics

 CANDU does well, by comparison to other reactor designs in postulated accident 

scenarios involving reactivity initiated accidents (RIA‟s).

 Longer neutron lifetime due to heavy water moderator makes a big 

difference.

 Benchmark Postulated Accident Scenario Comparisons, by design:

 CANDU-6

• Large Loss of Coolant Accident (LLOCA).

 TMI-1 (B&W PWR)

• Main Steam Line Break (MSLB)

 ESBWR

• Generator trip with steam bypass failure.

 AP-1000

• Rod ejection accident at hot full power (HFP), or hot zero power (HZP)
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CANDU During LLOCA

 Peak fuel enthalpy for CANDU-6 

under LLOCA:

 ~639 J/g

 Pulse width longer.

 Rate of power increase 

slower.

 Reduced chance of fuel 

damage.

 Peak fuel enthalpy in AP-1000 

REA, HFP:

 ~758 J/g

 Pulse width shorter.

 Longer pulse width decreases 

chance of fuel failure.

 CANDU transient slower.

 Long neutron lifetime.
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CANDU Safety Comparable to LWR’s

 Special CANDU features:

 Shutdown systems operate in low-pressure environment.

• Very high reliability.

 Auxiliary cooling by a large heat sink – moderator.

 Key Reference:

 A.P. Muzumdar and D.A. Meneley, “LARGE LOCA MARGINS IN 

CANDU REACTORS - AN OVERVIEW OF THE COG REPORT”, 

Proceedings of the 30th Annual Conference of the Canadian 

Nuclear Society, May 31 - June 3, 2009.
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Thorium Fuel Cycles in HWR’s

 Thermal breeders with thorium have 

been demonstrated.

 LWBR, light water, PWR.

 Shippingport, PA, U.S.A.

 1977-1981

 Special, heterogeneous seed-

blanket design with movable seed.

 C.R. ~1.013.

 Core-average burnup:

• ~4,200 MWd/t.

 Proof that thermal-breeding works, 

although maybe not economical 

with such a low burnup before re-

processing.
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Thorium Fuel Cycles in HWR’s

 HWR‟s have better neutron economy 

in thermal spectrum.

 C.R. > 1.0 feasible with Th-based 

fuels.

• Typically with 1.5 wt% to 2 wt% 

(average) U-233/Th-232.

• Lower flux / power density.

o Reduce capture in Pa-233.

 Challenging to have a practical, 

economical reactor system.

 Goals:

• First:  higher uranium utilization.

• Second:  thorium utilization.

• Third:  self-sufficiency on a pure 

U-233/Th-232 cycle.
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Thorium Fuel Cycles in HWR’s

 Design options:

 Once Through Thorium (OTT) cycles.

• Design for high burnup, uranium conservation.

• Homogeneous or heterogeneous fuel, and fuel bundle design options.

• LEU and/or Pu used as fissile material; Th is fertile.

• U-233 is bred and burned in situ, along with LEU and Pu.

• Spent fuel put into storage until economical to recycle.

 Self-sufficient Equilbrium Thorium (SSET) cycles.

• Design for C.R. > 1.0, maximize burnup as much as possible.

• Makeup feed material is Th-232.

• Spent fuel reprocessed.

o Fission products removed.

o U-233, Th-232 recycled (Pa-233 allowed to decay to U-233).

• Design for economical periodic reprocessing of fuel.
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Canadian Used Fuel Management

 On-site storage.

 First ~10 years in water pool.

 Next ~70-100 years in concrete containers.

 MACSTOR® in use in Canada, S. Korea, Romania.

 20-year AECL program validated long-term storage & 
disposal technologies.

 2007 June 14 Natural Resources Canada approved 
NWMO recommended “adaptive phased approach”

 Deep geological repository.

 Flexibility through phased decision making process.

 Optional interim step of shallow underground storage.

 Continuous monitoring.

 Potential for retrieval.

• Recycle / re-process U, Pu, Minor Actinides (MA)

• A future resource when supplies of NU become expensive.

• Long-term disposal of fission products.
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CANDU Spent-Fuel On-Site Storage

Water-filled Bays (Short Term)
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Used Fuel Storage In Reactor Pool
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CANDU Bundle Storage Baskets

for Dry Storage
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CANDU Spent-Fuel On-Site Storage

 Modular above-ground air-cooled concrete bunkers (longer term)
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MACSTOR Dry Storage Facility
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Spent Fuel Very Long-term Storage

 Deep geological repository; retrievable if necessary.
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Permanent Disposal of Used Fuel

The Canadian
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CANDU History

 NPD-2 (1962)

 Douglas Point (1968), Gentilly-1 (1972-1977)

 KANUPP (1972, Pakistan) – See supplement 2.

 RAPS 1,2 (India, 1973-1981) – See supplement 2.

 Pickering A/B (1971-1986)

 Bruce A/B (1976-1987)

 Darlington (1990-1993)

 CANDU-6

 Point Lepreau (1983), Gentilly-2 (1983)

 Embalse (1984)

 Wolsong (S. Korea, 1983-1999)

 Cernavoda (Romania, 1996-2007)

 Qinshan III (China, 2002-2003)
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NPD-2 (Canada, 1962)

 Nuclear Power Demonstration – 2

 Operated 1962-1985; shutdown 1987.

 89 MWth / 19 MWe (21.7% efficiency)

 World‟s first HWR to produce electricity.

 Pressure tubes, on-line refuelling.

 Short (0.5-m) natural-uranium fuel bundles.

 Test bed for CANDU technologies.

 Demonstration of feasibility of PHWR concept.

 Debugging D2O leakage, trips, reactivity control.

 Fuel performance, alternative designs.

 Feedback in design and operations of Douglas Point, Pickering, 
Bruce, and CANDU-6.

 Training center for operations.

 Experience for later CANDU designs.
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NPD-2 (Canada, 1962)

 132 PT‟s Zr-2

 26-cm pitch

 Control

 Mod. Level

 Mod. Dump

 Booster rod
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NPD-2 (Canada, 1962)

 0.5-metre bundles.

 7 elements, wire-wrap.

 Natural UO2, Zr-2 clad.

 C.R.= 0.8.

 Burnup:

 7,300 MWd/t.
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NPD-2 (Canada, 1962)

 2.6 kW/litre, 7.9 MPa, 277 C.

 Steam at 2.7 MPa, 232 C.
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NPD-2 (Canada, 1962)

 Rolphton, Ontario (west of Chalk River Laboratories)
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Douglas Point (Canada, 1968)

 Prototype for commercial PHWR.

 CANadian Deuterium Uranium (CANDU).

 Lessons learned from NPD-2.

 Construction/commissioning (1961-1967).

 Operated 1968-1984.

 Larger-scale test bed for equipment and operations.

• Debugging HW leaks.

 693 MWth / 200 MWe, th~29%, 4.77 kW/litre.

 D2O Coolant at 9.9 MPa, 293 C.

 Steam generators / drums.

 Steam at 4.1 MPa, 250 C
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Douglas Point (Canada, 1968)

 306 Pressure Tubes, Zr-2, 8.3 cm id

 22.86-cm lattice pitch (smaller than NPD-2)

 Control:  CdSO4; mod. level, dump; booster rods, adjusters.
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Douglas Point (Canada, 1968)

 On-line refuelling

 5 bundles per day, 2 per shift, 9-hour intervals
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Douglas Point (Canada, 1968) 

 19-element bundles (12 per channel)

 Natural UO2, Zr-2 clad, wire-wraps, 0.5-m long

 ~9,750 MWd/t burnup

 Larger fuel pins, C=0.72
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Douglas Point (Canada, 1968)

 Reactor core, containment views.
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Douglas Point (Canada, 1968)

 Heat transport flow diagram
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Pickering (Canada, 1971-1986)

 Multi-unit station

 Scale up Douglas Point.

 Feedback from NPD-2.

 390 Zr-2.5Nb pressure tubes

 28.58-cm pitch (bigger than NPD-2)

 28-element fuel bundles.

 Natural uranium UO2.

 C~0.82

 8,000 to 9,000 MWd/t burnup

 12 per channel.

 Pickering A (1971-1973)

 4x515 MWe

 First commercial reactors.

 Units A1 and A4 operating today.

 Pickering B (1982-1986)

 4x516 MWe (1982-1986)

 Operating today.

67



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010

Pickering (Canada, 1971-1986) 

 28-element fuel bundles, 390 channels.
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Pickering Fuelling Machine
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Pickering (Canada, 1971-1986) 

 Pickering Station
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CANDU - Bruce / Darlington 

(Canada, 1976-1993)

 Multi-unit CANDU stations

 Single vacuum building; shared equipment.

 Bruce A (1976-1979): 4 x 740 MWe (upped to 840 MWe)

 Bruce B (1984-1987): 4 x 750 MWe (upped to 860 MWe)

 Darlington (1990-1993): 4 x 881 MWe (net)

 480 Pressure Tubes, 12-13 bundles / channel

 37-element natural uranium fuel bundles (0.5-m)

 Fuel pins smaller than 

• 7-rod (NPD-2), 19-rod (Douglas Point), 28-rod (Pickering)

• Enhanced heat transfer; higher bundle powers.

 Burnup:  ~7,500 MWd/t to 9,000 MWd/t.

• Reduced resonance shielding with smaller pins, but,

• Larger core with reduced neutron leakage.

 CANDU 9 (1990‟s product development)

 Single-unit 900-MWe class CANDU station based on Bruce/Darlington 
designs.
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CANDU - Bruce / Darlington 

(Canada, 1976-1993)

 840 MWe to 881 MWe
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CANDU - Darlington (1990-1993)

 Construction during 1980‟s (350-tonne steam generator).
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CANDU-6 (Canada, 1983-2007)

 Single-unit Station 

 600 to 670 MWe net

 380 channels.

 Operations / Design Feedback

 Pickering, Bruce.

 Domestic

 Point Lepreau, Gentilly-2

 International

 Argentina, S. Korea, 

 Romania, China
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CANDU-6 (Canada, 1983-2007)

 Core, containment views.
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CANDU-6 (Canada, 1983-2007)
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CANDU-6 (Canada, 1983-2007)

 37-element fuel

 28.58-cm square pitch

 same as Bruce/Darlington.

 ~7,500 MWd/t burnup

77



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010

CANDU-6 (Canada, 1983-2007)

 Steam generator.

 Reactor face.
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CANDU-6 (Canada, 1983-2007)

 Headers and feeders for 

each channel.
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CANDU-6 – Reactivity Control

 Flux Detectors

 Vertical / Horizontal

 Vanadium, Inconel / platinum.

 Adjuster Rods.

 Shutoff Rods.

 Solid Control Absorber.

 Liquid Zone Controller

 H2O filled.

 He cover gas.
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CANDU-6 Reactivity Control

 The reactor is kept exactly critical (keff=1.000) during operation.

 Neutron production (through fission) exactly equals neutron loss 

(through absorption and leakage from core).

• keff = P / (A + L) = 1.000

 14 liquid zone controllers provide both bulk reactivity control, 

and spatial control of the power distribution.

 Water level in each zone control unit is separately controlled. 

• To maintain the reactor critical. 

• To maintain the power in each zone to the required level.
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CANDU-6 – Shutdown Systems

 Shutdown System (SDS1 and SDS2)

 Shutoff Rods

 Poison Injection

 Gd, Boron

 Redundancy

 Independent
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CANDU-6 – Shutdown Systems

 SDS1

 Mechanical Rods

 SDS2

 Poison injection.

 Gadolinium

 Boron
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CANDU-6 – Re-fuelling

 2 fuelling machines

 Charge/discharge

 12 bundle string

 8-bundle shift

 8 new bundles

 4 old bundles removed

 end plugs replaced

 ~110 bundles / week

 Bundle in core for ~280 – 300 days.
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CANDU-6 Re-fuelling Scheme
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CANDU-6 – Re-fuelling Machines 

 Re-fuelling machines.
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CANDU-6

 Core fuelling.
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CANDU-6 Performance

 High capacity factors (up to 93% average)
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CANDU-6 

 Qinshan III (China) (2002-2003)
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CANDU HWR Evolution

 Research, prototypes, commercial.

Gen III+

EC6 

ACR-1000

Gen IV

CANDU-SCWR
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Gen III+ HWRs

 Evolutionary design changes.

 Various improvements on existing designs.

 Monitoring, control systems.

 Component materials and manufacturing.

 Corrosion science, chemistry control.

 Operations and maintenance, inspections.

 Feedback from past experience (+50 years).

 More modularity, standardization.

 Reduced construction time, economies of scale.

 Enhanced safety.

 Better resource utilization; conservation of resources.

 Aim for reduced capital, operational costs.

 Aim for lower cost of electricity.
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Gen III+ HWR’s

 EC6 (Enhanced CANDU-6)

 Feedback from CANDU-6, Pickering, Bruce, Darlington, etc.

 ACR-1000 (Advanced CANDU Reactor)

 Feedback from CANDU-6, Pickering, Bruce, Darlington, etc.

 Feedback from FUGEN (Japan), SGHWR (U.K.), Gentilly-1.

 Feedback from LWR industry.

 India‟s 220-MWe, 540-MWe, 700-MWe PHWR‟s

 Evolutionary improvements on existing designs.

 Similar to Douglas Point, Pickering, CANDU-6 designs.

 AHWR (Advanced Heavy Water Reactor – India)

 Extensive domestic R&D.

 Feedback from domestic PHWR‟s (220-MWE, 540-Mwe class).

 Some feedback from FUGEN, SGHWR?

92



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010

EC6 (Canada, Gen III+)

 Enhanced CANDU-6 (EC6).

 Retains basic features of CANDU-6 reactor.

 700-MWe class reactor.

 Good for both large and medium-sized markets.

 Evolutionary improvements over CANDU-6:

 Target life up to 60 years, >90% capacity factor.

 Modern steam turbines with higher efficiency and output.

• ~680 MWe (net) / 2064 MWth, 32% to 33% net efficiency.

 Increased safety and operating margins.

 Additional accident resistance and core damage prevention features.

• Addition of a reserve water system for passive accident mitigation.

 A suite of advanced operational and maintenance information tools.

• SMART CANDU®.

 Improved plant security and physical protection.
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EC6 (Canada, Gen III+)

 Evolutionary improvements over CANDU-6 (continued):

 Improved plant operability and maintainability.

• Overall plant design.

• Advanced control room design.

 Improved severe accident response.

 Advanced fire protection system.

 Improved containment design features.

• Steel liner and thicker containment.

• Provide for aircraft crash resistance.

 Reduced potential leakages following accidents.

 Increased testing capability.

 Construction schedule of 57 months achieved.

• By use of advanced construction methods.

• Total project schedule as short as 69 months.
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EC6 Improvements

 Use of improved material and plant chemistry specifications based on 

operating experience from CANDU plants, 

 Life-limiting components such as heat transport system feeders and 

headers have been enhanced with higher chromium content to limit the 

effect of feeder corrosion

 Implementation of advanced computer control and interaction systems

 For monitoring, display, diagnostics and annunciation.

 Utilization of integrated SMART CANDU suite 

 For monitoring plant chemistry of systems and components

 Providing predictive maintenance capability.

 Ensuring capability for return to full power on restoration of the electrical 

grid.

 The EC6 reactor has the capability to continue operating and delivering 

house load without connection to the grid, therefore enabling a rapid 

return to full power upon reconnection.   
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EC6 (Canada, Gen-III+)
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Emerging Fuel Cycles for EC6

 A high-burnup mixed oxide (MOX)

 Could utilize plutonium from conventional reprocessing or more advanced 

reprocessing options (such as co-processing).

 MOX:  mixture of natural uranium and plutonium.

 DUPIC (Direct Use of Spent PWR Fuel in CANDU)

 Represents recycle option that has a higher degree of proliferation 

resistance than conventional reprocessing. 

 DUPIC uses dry processes for converting spent fuel from PWRs for use in 

the EC6 reactor without separating the plutonium.

 A thorium cycle or CANDU/Fast Breeder Reactor system.

 Long-term energy security can be assured through either of these.

 The Fast Breeder reactor would operate as a “fuel factory” to provide the 

fissile material to power a number of lower-cost, high-efficiency EC6 

reactors.

 EC6 could breed and burn U-233 from Th-232.
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Emerging Fuel Cycles for EC6

 NU, LEU, RU, NUE.

98



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010

Emerging Fuel Cycles for EC6

 MOX, DUPIC, Pu/Th, U/Th (OTT, SSET)
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Emerging Fuel Cycles for EC6

 Flexibility to burn many types of materials:

 NU, NUE, RU, DUPIC, LEU, MOX, Pu, U-233/Th, MA 

100



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010

Thorium Cycles in EC6 Reactors

 High neutron economy, on-line refuelling makes 

CANDU reactors well-suited for utilizing thorium.

 Once Through Thorium (OTT)

 42 or 54-element fuel bundles.

 3 wt% to 14 wt% (Pu or LEU)/Th driver/fertile.

 20 GWd/t to 45 GWd/t burnup.

 Self-Sufficient Equilbrium Thorium (SSET)

 ~1.5 wt% to 2.0 wt% U-233/Th

 Low burnup:  ~10 GWd/t.

• C.R. drops below 1.0 at higher burnups.

• Must reprocess to recycle U-233.

• Remove fission products.

 Improvements.

• Lower flux, remove Zr-91 from PT/CT, 

remove adjuster rods, higher purity D2O. 

• Alternative heterogeneous designs.
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ACR-1000 (Canada, Gen III+)

 Advanced CANDU Reactor

 Base on CANDU-6 design features

• Pressure tubes.

• Heavy water moderator.

• Short fuel bundles – online refueling.

• Multiple shutdown systems.

• Balance-of-plant similar, but higher steam P, T.

 3187 MWth / 1085 MWe (net)

• Higher coolant pressure/temperatures

• ~34% net efficiency.

 Modular construction, competitive design

 Lower capital costs.

 Local fabrication of components.

 Lower-cost electricity.
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ACR-1000 (Canada, Gen III+)

 Special features

 Light water coolant (11 MPa, 319 C)

• Reduced capital costs.

 CANFLEX-ACR Fuel Bundle

• 43-element design; enhanced heat transfer.

• Enriched fuel (2 wt% to 3 wt%), central absorbing pin (Dy).

• Burnup:  20,000 MWd/t (nominal), extend with experience.

 Tighter lattice pitch; thicker pressure tubes, larger calandria tubes.

• More compact core; smaller reactor; higher power density.

• Negative coolant void reactivity.

 Heavy water inventory reduced to ~ 1/3 of CANDU.

• Reduced capital costs.

 Reactivity devices

• No adjusters.

• Liquid zone control (LZC) replaced: mechanical zone control (MZC) rods
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ACR-1000 (Canada, Gen III+)

 Special features

 Safety systems

• Steel-lined large containment.

• Long-term cooling system to perform long term ECC and maintenance 

cooling.

• High-pressure emergency feedwater system.

 Severe accident prevention / mitigation.

• Reserve Water Tank for passive makeup to reactor cooling system, 

steam generators, calandria and reactor vault.

• Moderator improved circulation.

• Purpose is to prevent / contain severe accident within the calandria.
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ACR-1000 (Canada, Gen-III+)

 Plant Layout
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ACR-1000 (Canada, Gen-III+)

 Vertical and horizontal penetrations.

 SDS-1, SOR, MZC

 SDS-2 

 Reactor assembly same size as 

CANDU 6 with more fuel channels, and 

higher power.

 Simple bundle design with low enriched 

uranium (LEU) Reference Fuel

 20,000 MWd/t burnup.
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ACR-1000 (Canada, Gen-III+)

 43-element CANFLEX fuel bundle

 Same diameter and length as CANDU.

 Greater subdivision for higher thermal 
margin (lower heat flux).

 42 elements contain ~ 2 to 3 wt% LEU

• Uranium dioxide; Zr-4 clad.

 Central poison element

• Yttrium-stabilised matrix

• ZrO2 + Dy2O3 + Gd2O3

• More neutron absorption during 
voiding.

 Reference burn-up      ~20,000 MWd/t
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Compare CANDU and ACR Lattices

 ACR-1000 lattice pitch tighter than CANDU-6

CANDU 6

Lattice Pitch = 28.58 cm

ACR

Lattice Pitch = 24.0 cm
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ACR-1000 (Canada, Gen-III+)

 CANFLEX-ACR Fuel Bundle

109



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010

ACR-1000 (Canada, Gen-III+)
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ACR-1000 (Canada, Gen-III+)

 Heat Transport System

 Containment.
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ACR-1000 (Canada, Gen-III+)

 Evolutionary Nuclear Steam Supply System (NSSS)

 Same reactor coolant system as CANDU-6 and Darlington

CANDU-6 ACR-1000
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ACR-1000 (Canada, Gen-III+)

 Larger thermal / electrical power level.

 Suitable for markets requiring 1000-MWe-class reactors.

 More compact reactor (higher power density).

 Reduced capital costs (smaller containment).
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ACR-1000 (Canada, Gen-III+)

 Higher primary circuit pressure and temperature
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ACR-1000 (Canada, Gen-III+) 

 Increased steam pressure and temperature.

 Less wet steam.

 Higher thermal efficiency (~34% net)
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ACR-1000 (Canada, Gen-III+)

 Heavy water inventory reduced by ~66%.

 From ~0.67 Mg/MWe to ~ 0.23 Mg/MWe

 Approximately 1/3 of the D2O required.

 Capital cost savings.
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ACR-1000 (Canada, Gen-III+)

 ACR-1000 has higher power density.

 ~ same size as CANDU-6, but ~60% more power.
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ACR-1000 (Canada, Gen-III+)

 Fueling Machine at Reactor Face
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ACR-1000 (Canada, Gen-III+)

 Multiple barriers – defense in depth

 Fuel

• UO2

• Clad

 Individual PT / CT

 Moderator tank.

 Containment.

• Steel liner.

• Re-enforced Concrete.
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ACR-1000 (Canada, Gen-III+)

 Twin-unit stations

 Generation III+ 

 1200 MWe-class reactor

 Evolutionary, based on 

CANDU 6

 Enhancements:

 Passive Safety

 Reduced Cost

 Ease of Operability 

 Low Risk Delivery
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Thorium Cycles in ACR-1000

 Once Through Thorium 

(OTT)

 5 wt% Pu in Th

 U-233 bred and burned 

in situ.

 21 GWd/t.

 Spent fuel stored.

 Self-Sufficient  in U-233.

 U-233+Pu+Th

 Less Pu required.

 U-233 recycled.

• Self-sustaining in U-233.

 21 GWd/t.
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ACR-1000 (Canada, Gen-III+)

 Canadian Regulatory Review

 Pre-Project Design Review by Canadian Nuclear Safety Commission 
(CNSC) started 2008 April and to be completed in 2009.

• Generic Safety Case Report delivered to CNSC 2008 June.

• CNSC confirmed design meets Canadian regulatory requirements.

 Potential Opportunities

 Alberta

• Four-unit site preparation licence applied for by Bruce Power 
Alberta.

 Ontario:  Ontario Power Generation (OPG), Electrical Utility

• New builds under consideration in Ontario (2 to 4 new reactors).

• Delay in making decisions due to short-term reduced electricity 
demand as result of world-wide economic downturn.

• Technology will be selected by competitive process.

 New Brunswick: Point Lepreau 2 

• ACR-1000 under consideration, while other options investigated.

• First priority is the successful refurb of Point Lepreau 1 (CANDU-6) 
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India’s Gen III+ HWR Projects

 PHWR

 D2O-moderated, D2O-cooled pressure-tube reactors.

 220-MWe, 540-MWe, 700-MWe class PHWR‟s.

 Size options to fit local market requirements.

 Similar to CANDU designs:

• Douglas Point (~220 MWe)

• Pickering (~540 MWe)

• CANDU-6 (~700 MWe)

 But, evolutionary design improvements.

 Advanced Heavy Water Reactor (AHWR)

 Under current development in India.

 Boiling light water coolant, thorium-based fuels.

 General similarities to SGHWR, FUGEN prototypes.

• Fuel bundle design with many innovations.
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India’s Gen-III+ PHWR’s

 Developed for smaller-sized markets.

 220-MWe class PHWR.

 Similar to Douglas Point CANDU design

 Zr-2.5%Nb PT‟s.

 19-element UO2 fuel bundles with bearing pads.

• 10 bundles per channel.

 4 modern steam generator units.

 540-MWe class PHWR.

 Similar to Pickering CANDU design (390 channels).

• But with 37-element NU fuel bundles, 12 bundles/channel.

• 392 Channels, Zr-2.5%Nb PT, Zr-4 CT.

• 4 Vertical U-tube steam generators.

 700-Mwe class PHWR

 Based on India‟s indigenous 540-MWe PHWR design, with increased power 

output, with some similarities to CANDU-6.
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India’s 220-MWe, 540-MWe PHWRs

 See:  http://www.npcil.nic.in/pdf/NPCIL_Brochure11_05_09.pdf
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India’s 220-MWe, 540-MWe PHWRs

 Smaller-

sized 

markets.

 Modern 

steam 

generators.

 Modern 

steam 

turbines.
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India’s PHWR Evolution

 Commercialization of indigenous PHWR‟s.
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AHWR (India, Gen-III+)

 Advanced Heavy Water Reactor 

 Prototype design under optimization and refinement.

 Work continues on various design options.

 Pu from PHWR, fast reactor, or spent LWR fuel.

 U-233 from fast reactor, or self-sustaining.

 Goals:

 Advanced technologies required for Gen-III+

 Demonstrate thorium fuel cycle technologies.

 Fuel cycles with reduced environmental impact. 

 Heavy water moderated.

 Boiling light water-cooled.

 Steam to turbines at 6.8 MPa, 284 C. 

 920 MWth / ~300 MWe (net)

 ~32% efficient (for prototype).

 452 vertical fuel channels, 61 control channels.

 22.5-cm pitch, 54-element fuel assemblies.
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AHWR (India, Gen-III+)

 Hundred year design life of the reactor.

 No exclusion zone beyond plant boundary required.

 Heavy water at low pressure reduces potential for leakages.

 Elimination of major components and equipment:

 Primary coolant pumps and drive motors.

 Associated control and power supply equipment.

 Save electrical power.

 SDS1: 37 shut off rods.

 B4C rods.

 SDS2:  Liquid poison injection in moderator.

 Lithium Pentaborate poison for shutdown.

 24 Control Rods.

 Passive (natural) shutdown system

 Poison injection into moderator through valve actuated by increase in 

steam pressure.

129



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010

AHWR Passive Safety Features

 Core cooling by natural circulation.

 Negative void coefficient of reactivity.

 Large heat sink

 Gravity Driven Water Pool

 Passive Core decay heat removal.

 Passive containment cooling.

 Emergency core cooling injection in fuel 

assembly design.

 Passive poison injection in moderator

 In event of non-availability of 

primary/secondary shutdown systems. 

 Core submergence.

 Double Containment.
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AHWR Standard Fuel

 Fuel:  (U-233,Th)O2 + (Pu/Th)O2

 ~75% power from U-233 fission.

 ~20% power from Pu

 ~5% power from U-235

 Burnup:  ~38 GWd/t (average).

 Inner Ring (12 pins)

 3 wt% U-233 in Th.  

 Middle Ring (18 pins)

 3.75 wt% U-233 in Th.

 Outer ring (24 pins)

 4.0/2.5 wt% Pu in Th.

 Central displacer unit.

 Central displacer rod.

 Lower half of Zircaloy, upper half of SS.

 Within Zircaloy tube which is filled with ECCS water.
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AHWR Standard Design

 Burnup ranges from 33 to 48 GWd/t

 3 burnup zones.

 Average 38 GWd/t.

 73 channels refuelled / year.

• ~1/6 of core / year.

 Low Pu consumption

 Annual Pu requirement 123 kg.

 Annual U-233 requirement 163 kg

 Deficit in U-233 by 22 kg (13.5%)

 CVR from operating conditions:

 -8 mk to -4 mk, varies with burnup.

 SDS-1(35 SORs) meet the 

shutdown margin in operating and 

accidental conditions.
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(Th-Pu)MOX

(Th-U233)MOX

Zircaloy rod

Dia=18 mm

Zr-Tube

(ID/OD=30/36mm)

Modified Design to

Achieve Self-sufficient U-233
 Modified Cluster design

 Inner Ring (12 pins)

 4 wt% Pu in Th 

 Middle Ring (18 pins)

 3.75 wt% U-233 in Th

 Outer ring (24 pins)

 2.5/4.0 wt% Pu in Th

 Central displacer rod

 Zircaloy within a zircaloy 

tube throughout the 

cluster
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Equilibrium Core for Self-

Sufficient U-233 Production.

 Modified clusters - outer 228 channels.

 Standard clusters - inner  224 channels. 

 Refuel 78 (39+39) channels / year.

 73 kg of Pu  / year

 Makeup required.

 144 kg of U-233 needed/year

 ~1.85 kg/cluster (average).

 Self-sustaining; no makeup required.

 Burnup:  29 GWd/t to 48 GWd/t

 3 burnup zones.

 35.5 GWd/t average.

 ~65% power from U-233/Th-232.

 Reactivity coefficients similar.

 Void reactivity slightly more negative.
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Average discharge burn up  35.5  

GWd/te. 
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Two Cluster Types for Self-

sufficiency of U-233 in AHWR

 Equal numbers of standard 

and alternate clusters.

 Leads to equilbrium U-233 

production that gives 

concentration that is same 

at average exit burnup 

(~35 GWd/t) as at 

beginning.

 Makeup Pu still required.

 Fast reactor.

 PHWR reprocessed?

 LWR reprocessed?
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AHWR Core Designs Comparison

136

Core features Self Sustaining Standard

Power to the coolant, MWth 920 MWth 920

Power from Thorium/U233, % 65 75

a) No. of Fuel channels refuelled per year.

b) Pu, kg, required per year

c) U233(net), kg, required per year. 

78(39+39)

173 

NIL 

73

123

22

No. of SOR 

Worth: Total/2 max. worth rods are not available: mk

37

70.4/  51.9               

37

74.1/ 51.4 

No. of Control rods (AR/RR/SR)

Worth, mk

24 (8+8+8)

11.4/10.9/12.1

24 (8+8+8)

10.9/10.9 /10.6

Fuel temperature  coefficient k/k/ C: -2.1x10-5 -2.1x10-5

Channel temperature coefficient, k/k/ C 2.1x10-5 1.9x10-5

Void coefficient, k/k / % void -5.9x10-5 -5.7x10-5

Moderator temperature  coefficient, k/k/ C 5.5x10-5 5.2x10-5 

Coolant temperature  coefficient, k/k/ C 4.6x10-5 4.2x10-5 
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Outer ring fuel pins 

with 22.5% of 

LEUO2, balance 

ThO2

Central ring fuel 

pins with 22% of 

LEUO2, balance 

ThO2

Inner ring fuel pins 

with 18% of 

LEUO2, balance 

ThO2

Central Structural 

Tube

Solid Rod

AHWR-LEU (India, Gen-III+)

 Alternative to using Pu in AHWR.

 Use LEU (U,Th)O2

 AHWR design flexible.

 LEU in AHWR cluster.

 19.75 wt% U-235/U

 Inner ring:18.0 wt% UO2

 Middle ring: 22.0 wt% UO2

 Outer ring:  22.5 wt% UO2

 Fertile ThO2 is balance of fuel.

 Net fissile U/ (Th+U): 4.21 wt%

 Input natural uranium (NU) required:

• 17.84 tonnes /TWhe

 Average discharge burnup:

 ~64 GWd/t.
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AHWR-LEU (India, Gen-III+)

 Inherent safety 

characteristics.

 Reactivity  

coefficients 

negative.

 Sufficient 

reactivity worth of 

shutdown 

systems  ensured 

under all 

accidental 

conditions.

 CVR more 

negative.

 ~ -8.7 mk
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Average discharge burnup (MWd/te) 64,000

Energy per tonne mined uranium (MWd/te) 7,826

Power from thorium (%) 39

Number of control rods (Worth in mk) Absorber

Regulating

Shim rod:

8 (10.9)

8 (11.6)

8 (9.9)

Regulating rod worth (67% in) (mk) 5.33

Number of shutoff rods (Total worth in mk) 45 (-83.25)

Total worth shutoff rods if two maximum 

worth rods are unavailable (mk)

-60.28

Fuel temperature coefficient ( k/k/K) -2.82 x 10-5

Channel temperature coefficient ( k/k/ C) -3.73 x 10-5

Void coefficient ( k/k/% void) -8.72 x 10-5

Moderator temperature coefficient ( k/k/ C) -3.09 x 10-5
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AHWR-LEU (India, Gen-III+)

 At exit burnup of ~64 GWd/t

 ~66% power from U-233 bred from Th-232.

 ~17% power from U-235 .

 ~17% power from Pu bred from LEU.

 AHWR-LEU provides better utilization of NU resources.

 Significantly less mined natural uranium required than for LWRs.

 39% power by fission of U-233 from in-situ conversion of Th-232

• (Burnup average).

 Spent fuel.

• Uranium 8 wt% fissile

o Can reuse in other reactors (e.g., PHWR).

• Plutonium. 

o Reuse in fast reactors.

 Less than 50% of MA produced per TWhr relative to modern LWR‟s.

139



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010

AHWR (India, Gen-III+)

 Several fuel options for AHWR, flexibility:

 Standard (Th,Pu)O2 cluster.

 Mixed core of two cluster types (Th,Pu)O2 for U-233 self-sufficiency.

 LEU in (U,Th)O2 clusters. 

 High burnups:

 ~38 GWd/t (Standard)

 ~35 GWd/t (Self-sufficient U-233)

 ~64 GWd/t (LEU)

 Negative reactivity coefficients.

 Mined uranium requirement  per unit energy is less for AHWR as compared 

with alternatives.

 Significant power fraction fro U-233/Th-232:

 75% (Standard)

 66% (Self-sufficient U-233)

 39% (LEU)
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AHWR (India, Gen-III+)

 U, Pu recovered from  spent (LEU,Th)O2 with 8 wt% fissile

 Use in other reactors. 

 Pu production reduced, relative to alternatives (PHWR, LWR).

 Minor Actinide (MA) production reduced relative to PWR‟s.

 Radio-toxicity due to AHWR lower, compared to PWR or PHWR.

 U-232 and Pu-238 present in reprocessed U and Pu from AHWR 

makes fuels more proliferation-resistant.
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TR-1000 (Russia, 1989)

Gen-III+, Gen-IV HWR ???

 TR-1000 (Russia)

 1989 concept proposal.

 Based on past experience with 

KS-150 / A1 Bohunice GCHWR 

technology.

 CO2 coolant, 9.8 MPa, 400 C to 

450 C outlet.

 Metallic Natural U, or U/Pu, clad 

with Zr-alloy, C.R.>0.80

 Burnup ~ 10 GWd/t

 Pre-stressed concrete pressure 

vessel.

 3200 MWth / 1000 MWe

 Steam at 7 MPa, 400 C.

 Net efficiency ~31%.

 Design for recycling Pu.
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Gen-IV HWR’s

 Super-critical HWR

 Super-critical coolant, not reactivity !

 H2O at 25 MPa, 530 C to 625 C.

• D2O is an alternative coolant.

 Not quite liquid, not quite vapor

 45% to 50% net thermal efficiencies possible.

 Early Concept:

 SCOTT-R Reactor (1962), Westinghouse USA

 Super Critical Once Through Tube Reactor

 Today / Tomorrow:

 CANDU-SCWR

 Combine CANDU technology with supercritical H2O.

 Parametric design studies underway.
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SCOTT-R (1962, Westinghouse)

 Supercritical, with nuclear re-heat.

 th > 44%
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CANDU-SCWR (Canada, Gen-IV)

 25 MPa, ~325 C inlet, 500 C to 625 C exit.

 Direct Cycle, Efficiency ~ 45%.

 >1000 MWe.
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CANDU-SCWR (Canada, Gen-IV)

 CANDU Design features in CANDU-SCWR

 Pressure tubes, with fuel bundles inside.

• But, pressure vessel concept under consideration as well.

 D2O moderator at lower temp. (~80 C), pressure.

• Also an auxiliary heat sink in case of postulated accident.

 Design changes/options considered for CANDU-SCWR.

 Horizontal or vertical channels.

 Thicker pressure tubes.

 Once-through, or re-entrant tubes.

 Insulated liner or double wall between PT and fuel bundles.

 Multi-batch off-line refuelling.

• Boron dissolved in moderator for excess reactivity hold down.

 Fuel bundle modifications.

• Enrichment (compensate for materials, higher burnup).

• Number of pins.
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CANDU-SCWR (Canada, Gen-IV)

 Channel Design options

 High Efficiency Channel (HEC)

 Re-Entrant Channel (REC)

 PT Materials

 New Zirconium alloys

• Zr-3.5%Sn-0.8%Nb-0.8%Mo

o “Excel” alloy.

 Insulators

 Porous Yt-stabilized ZrO2 (YSZ)

 Thin Liner Tube (HEC), Inner Tube (REC)

 Ni-alloys, ferritic-martensitic materials.

 Low-swelling stainless steels.
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CANDU-SCWR (Canada, Gen-IV)

 Fuel options:

 LEU and/or (Pu,Th)O2.

• 3 wt% to 5 wt% LEU, or 5 wt% to 10 wt% Pu in Th.

• Target exit burnup: ~40 GWd/t (3-batch refuelling). 

 Enrichment, more excess reactivity to compensate for:

• Neutron absorption by special materials for SCW environment.

• Thicker PT, super-critical water coolant.

• Multi-batch re-fuelling.

 Greater fuel pin sub-division.

• Enhanced heat transfer surface area.

• 42 pins, or 55 fuel pins.

 Clad

• Stainless steel, high-chromium alloys.

 Lattice pitch options: 22 cm to 29 cm
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CANDU-SCWR (Canada, Gen-IV)

 Design options to minimize coolant void reactivity.

 Vary lattice pitch (to adjust M/F).

• 22 cm to 27 cm.

 Gap between CT and PT (like ACR-1000).

 Moderator displacer tubes (like SGHWR).

 Vary thickness/porosity of insulators.

 Vary geometry to put fuel at outside (similar to AHWR).

 Burnable neutron absorber pins (like ACR-1000).

 One particular design.

 27-cm square lattice pitch.

 300 vertical channels.

 2540 MWth.

 3-batch cycle, 315-day cycle length.

 4 wt% LEU, ~28.5 GWd/t exit burnup.
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CANDU-SCWR (Canada, Gen-IV)

 CANFLEX-ACR inside HEC

 42-element bundle.

• Stainless steel clad.

 Central BNA pin.

• 30 wt% Dy2O3 in ZrO2

 Variation of:

• 20 cm to 29 cm pitch.

• Insulator thickness, porosity.

• Pressure tube thickness

• 3.5 wt% to 5 wt% LEU

 Burnup (3 batch):

• 13 GWd/t to 33 GWd/t

 CVR

• -11 mk to +8 mk 

150



Dr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River LaboratoriesDr. Blair P. Bromley, Atomic Energy of Canada Limited (AECL) – Chalk River Laboratories

Aug. 25 – Sept. 3, 2010

CANDU-SCWR (Canada, Gen-IV)

 REC Design Concept

 55-element bundle.

 Moderator displacement tubes.

• Reduce moderator/fuel ratio.

• Ensure negative coolant void 

reactivity (CVR).

 Central tube with gap for 

• Solid, gas, or stagnant 

coolant.

 4 wt% LEU.

 31 GWd/t exit burnup

• 3-batch refuelling.

 CVR varies -7 mk to -25 mk.
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Gen-V HWR’s ???

 Advances in:

 Materials science, manufacturing, process engineering.

 Corrosion sciences, chemical engineering.

 Isotope separation techniques.

 Engineering design, computational analysis tools.

 Balance of plant design, power conversion cycles.

 Revisit old ideas postulated, tested, with modifications.

 1950‟s, 1960‟s, etc.

 Use D2O or alternative deuterated compounds as the moderator for 

high-neutron economy; save neutrons.

 Design goals

 High thermal efficiency (>50%).

 High conversion ratios, or thermal-breeding (e.g. with Th/U cycle).

 High burnup / resource utilization.

 Low long-term cost of electricity.
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Gen-V HWR’s ???

 Consider alternative coolants:

 Gases:  CO2, He, Ne, etc. at high pressure (~10 MPa).

• Option to use in direct Brayton (gas turbine) cycle.

 Liquid metals Pb, Pb/Mg, Na, Li-7

 Organic coolants.

 Molten salts.

 Consider alternative fuel forms.

 Pu-metal, U-metal, Th-metal alloys.

 PuC, ThC, UC in graphite blocks, pebble bed, or particle beds.

 Carbon-tube clad, vitro-ceramics.

 Porous or annular fuel pellets

• Passive or active venting/removal of fission product gases.

 Liquid metal fuel – allow U, Pu, Th to melt.

• Contain within carbon tubes; high thermal conductivity.
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Gen-V HWRs ???

 Balance of Plant / Power Conversion Cycles:

 Super-critical H2O secondary cycle.

• In combination with liquid metal or gaseous primary coolant.

• Demonstrated in existing fossil fuel plants.

 Brayton Cycles with gaseous coolants.

• Compact turbines – major capital savings costs.

 Stirling cycles.

• Approach near-Carnot efficiencies:  th-Carnot = 1 – Tc/Th

• If Tc = 300 K; Th=1000 K, then is th ~70% possible?

 Combined cycles:

• Brayton (gas turbine) + Rankine (steam).

 Dissociating coolants in turbines:  N2O4 + heat 2 NO2

 Other???

 Ultimately, driven by safety and cost-of-electricity.
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Additional Future Roles for HWR’s

 Advanced Fuel Cycles.

 Synergism with LWR‟s and fast reactors.

• Integrated nuclear energy system.

 Extending nuclear fuel utilization.

 Breeding and burning of U-233 from Th-232.

• Once-through-thorium (OTT), or,

• Self-sufficient equilibrium thorium (SSET).

 Minimizing waste management issues.

• Burning of Pu and higher actinides.

 Water Desalination

 Fresh water is short supply world-wide.

 Power for reverse-osmosis plants.

 Waste heat for low-temperature distillation.
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Additional Future Roles for HWR’s

 Hydrogen Production

 High-temperature electrolysis.

 Thermal/chemical processes.

 Direct use in fuel cells for transportation, or, 

 Upgrading of low-grade hydro-carbon fuels.

• Coal, bitumen, biomass, peat.

o Synthetic gasoline, diesel, methanol, ethanol, etc.

 High-temperature Steam

 Enhanced recovery and upgrading of hydrocarbons

• Oilsands, coal

 Role for alternative HWR designs to produce very high-

temperature steam.

• CANDU-SCWR, gas-cooled HWR‟s.
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International Penetration of HWR’s

 World installed and operating nuclear capacity (2009):

 439 Reactors, ~375 GWe net

 World installed HWR capacity (2009):

 48 Reactors, ~25 GWe net 

 20 Reactors in Canada, ~15 GWe net

 28 HWR abroad

• India (17), South Korea (4), China (2), Romania (2), Argentina (2), 

Pakistan (1) 

 HWR‟s:  ~11% of reactors, ~7% of net power

 Current commercial HWR‟s tend to be smaller in size:

 ~200 MWe to ~900 MWe

 But, ACR-1000 is sized (~1085 MWe, net) for larger markets.
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Argentina (1)

Canada (20)
Romania (2)

India (2)Pakistan (1)

South Korea (4)

China (2)

CANDU Reactors Around the World
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Pickering, Ontario

(1971-73, 1983-86)

Darlington, Ontario (1990-93)

Bruce, Ontario

(1977-79, 1985-87)

Pt. Lepreau, New Brunswick

(1983)

Gentilly 1 and 2, Quebec

(1971, 1983)

NPD-2, Ontario (1962)

Douglas Point, 

Ontario (1966)

CANDU’s in Canada
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Wolsong, South Korea

(1982, 1997-99)

Embalse, Argentina 

(1984)

Cernavoda, Romania

(1996, 2007, …?)

Rajasthan, India

(1973, 1982)

Kanupp, Pakistan (1972)

Qinshan, China

(2002-03)

CANDU’s Around the World
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Why are HWR’s not the Dominant 

Technology Today?

 Partly Historical / Competing Technologies.

 Cost of producing D2O.

 Graphite much cheaper, although not as good a moderator.

• Pathway initially chosen by other nations:

o U.K. (Magnox, AGR), France (GCR), Russia (RBMK).

 Weapons/Defence and Naval programs.

 Development of industrial infrastructure for uranium enrichment.

• U.S.A., Russia, U.K., France, China.

 Use of PWR‟s for naval submarines, and aircraft carriers.

• Unique application for which PWR‟s well-suited.

• Compact cores, simple reactor design.

• Cost of fuel is not a concern for defence budget.

 Large investment in LWR technology.

• Major head start on alternatives.

• BWR technology benefited from R&D for PWR‟s.
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Why are HWR’s not the Dominant

Technology Today?

 Uranium supplies available and cheap (for now)

 Canada, Australia, U.S.A., Kazakhstan, Africa, etc.

 Enriched uranium supplies assured (for now)

 Important for Europe, Japan, Korea.

 Recycled and down-blended HEU from weapons programs.

 Competing Technologies.

 Resources to support more than one or two technologies limited.

 Many countries switched / focused on LWR technology.

• U.S.A., Russia:

o Knowledge and experience base is large.

• France, Germany, Sweden, Switzerland, Belgium, etc.

• Czech, Slovakia, Ukraine, Taiwan.

• Japan, S. Korea; others have followed suit

 U.K.:  Magnox and AGR‟s were performing well in 1970‟s.

• Technical difficulties; now seeking standardization for new reactors. 
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Motivating Factors to Use more 

HWR’s in the Future

 Fuel Costs.

 As uranium demand increases and cost goes up.

 High conversion ratios become important.

 HWR design variants will be advanced converters.

• Possibly more cost effective than using Fast Breeders alone.

 Need to exploit alternative fuels:

• Recycled uranium, plutonium  from LWR‟s.

• Thorium fuel cycle (breeding and burning U-233).

 Integrated Reactor Systems.

 HWR‟s complementary to LWR‟s and Fast Reactors.

• Extending fissile and fertile fuel resources with high CR.

• Burning of Pu and Actinides from spent fuel of LWR‟s and FR.

• Minimizing spent fuel and waste for long-term storage.
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Motivating Factors to Use more 

HWR’s in the Future

 Next-generation Designs.

 Gen-IV and beyond.

 Issues for large pressure vessels.

• Manufacturing challenges, availability, local fabrication.

 Modular design with pressure tubes more feasible.

• Particularly for super-critical-water coolant designs.

 Renewed motivation to use super-critical water, organic, gas, liquid 

metal, or molten salt coolants.

• To achieve high thermal efficiencies ~50%

• PT design with maximum neutron economy possible.

 Use of thermal neutron spectrum is attractive.

• Lower fuel enrichment required than in a fast reactor.

• Longer neutron lifetime, especially in a D2O reactor, is an enhanced 

safety feature.
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Conclusions

 Heavy Water Reactor Advantages.

 Excellent neutron economy, better utilization of resources.

 Special safety features:

• Large heat sink, multiple shutdown systems, longer neutron lifetime.

 Modular construction (pressure tubes)

• Local manufacturing.

 On-line refuelling high capacity factors, higher fuel utilization.

 Flexibility for fuel and coolant types.

 Technology Improvements.

 Reducing cost of D2O using advanced separation technologies

 Better materials, sealing, less corrosion, easier maintenance.

• Similar goals for other technologies.

 Improving thermal efficiencies (alternative coolants).
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Conclusions

 International Interest in Heavy Water Reactors

 Canada – main focus:  mature technology / commercialized

• Technology development since 1945.

• CANDU design development; CANDU-6 exported abroad.

• EC6 and ACR-1000 are Gen-III+ designs, with reduced capital costs. 

 India – long-term interest with large supplies of thorium

• PHWR‟s patterned after / similar to Canada.

• Independent / domestic technology development.

• AHWR is India‟s next-generation design.

 Germany, U.K., Japan, France, Sweden, U.S.A, etc.

• HWR prototypes developed and tested.

• Resources to develop and sustain alternative technologies limited.

• Secured supply of cheap uranium has put focus on LWR technology, 

but this could change in the future, as world demand for nuclear 

energy increases.
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Conclusions

 Future for HWR Technology

 Reducing capital costs; improving efficiencies.

 Use of enriched fuel; alternative coolants.

 Complement other technologies (faster breeders, LWR‟s, etc.)

• Spent fuel from LWR‟s could be used in HWR‟s.

• Exploitation of thorium-based fuels.

 Increasing cost of fuel favors HWR technology.

 Increasing role for HWR‟s in nuclear energy supply

 World demand for nuclear energy growing.

 Keeping several options open is prudent.

 HWR‟s are an important part of the nuclear energy mix.

• Today, and even more so in the future.

 Plenty of business for everyone.
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Useful Websites

 Canada (AECL):
 http://www.aecl.ca/site3.aspx

 http://www.aecl.ca/Assets/Publications/Posters/CANDU-Evolution.pdf

 http://www.aecl.ca/Reactors/CANDU6.htm

 http://www.aecl.ca/Assets/Publications/C6-Technical-Summary.pdf

 http://www.aecl.ca/Assets/Publications/EC6-TS_Eng.pdf

 http://www.aecl.ca/Assets/Publications/ACR1000-Tech-Summary.pdf

 http://www.aecl.ca/Assets/Publications/Fact+Sheets/ACR-1000.pdf

 Canada (other):

 http://www.nuceng.ca/

 http://www.cns-snc.ca/home_eng.html

 http://www.nuclearfaq.ca/

 http://www.physics.ubc.ca/~waltham/pubs/d2o_19.pdf
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Useful Websites

 Canteach website:  a treasure chest of information on HWR‟s.
 Many reports, papers, presentations, images, etc.

 http://canteach.candu.org/

 http://canteach.candu.org/catalog.html

 http://canteach.candu.org/image_index.html
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Useful Websites

 India:

 http://www.npcil.nic.in/nupower_vol13_3/ahwr.htm

 http://www.powermag.com/print/issues/departments/global_monitor/

 http://www.iaea.org/inisnkm/nkm/aws/fnss/fulltext/te_1319_16.pdf

 http://www.npcil.nic.in/annualreport08_09.pdf

 Other:

 http://www-pub.iaea.org/MTCD/publications/publications.asp

 http://www.world-nuclear.org/info/inf08.htm

 http://en.wikipedia.org/wiki/CANDU_reactor

 http://inisdb.iaea.org/

 Wallcharts (images) of reactors:

 http://econtent.unm.edu/cdm4/browse.php?CISOROOT=/nuceng

 Just Google, Yahoo, or Wikipedia “heavy water reactor”
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On-line Videos

 CANDU-6

 http://poweringthefuture.nbpower.com/en/Library/Videos.asp

x?id=opp

 http://www.videos.aecl.ca/C6_flythru02.mpg

 ACR-1000

 http://www.videos.aecl.ca/ACR-1000.wmv
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September 7, 2010

50th Anniversary of ZED-2

 Zero Energy Deuterium – 2

 Heavy Water Critical Facility at Chalk River Laboratories.

 5 Watts – 200 Watts

 Fundamental lattice physics, core physics, kinetics tests.

 Calibration of flux detectors.

 Physics design verification.

 Validation data for physics codes.

 Support of many HWR concepts and designs.
 Organic coolants (OCR), gas coolants (air, CO2, He)

 Boiling light water (e.g., CANDU-BLW, Gentilly-1)

 CANDU (NPD, Douglas Point, Pickering A/B, Bruce A/B, Darlington)

 CANDU-6, Enhanced CANDU-6 (EC6), ACR-1000

 http://www.cns-snc.ca/

 Sign up for upcoming ZED-2 conference (Nov. 1-3, 2010).
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Atomic Energy of Canada Limited (AECL)

Chalk River Laboratories

 ~ 2 hours drive west of Ottawa, Ontario, Canada
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Frederic Joliot / Otto Hahn 

Summer School

 Visit www.fjohss.eu
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